قالب وردپرس درنا توس
Home / Science / CasX enzymes comprise a specific family of RNA-driven genome editors

CasX enzymes comprise a specific family of RNA-driven genome editors



  • . 1

    Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 526 55-61 (2015).

  • . 2

    Wright, AV., Nuñez, JK & Doudna, YES. Biology and Applications of CRISPR Systems: Nature's Toolkit for the Genome Engineering. Cell 1

    64 29-44 (2016).

  • . 3

    Barrangou, R. & Doudna, J.A. Applications of CRISPR Technologies in Research and Beyond. Nat. Biotechnol . 34 933-941 (2016).

  • . 4

    Strutt, SC, Torrez, RM, Kaya, E., Negrete, OA & Doudna, RNA-dependent RNA targeting by CRISPR -Cas9. eLife 7 e32724 (2018).

  • . 5

    Koonin, E.V., Makarova, K.S. & Zhang, F. Diversity, Classification and Development of CRISPR-Cas Systems. Curr. Opinion. Microbiol . 37 67-78 (2017).

  • . 6

    Cong, L. et al. Multiplex genome engineering with CRISPR / Cas systems. Science 339 819-823 (2013).

  • . 7

    Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2 e00471 (2013).

  • . 8

    Burstein, D. et al. New CRISPR-Cas systems from uncultured microbes. Nature 542 237-241 (2017).

  • . 9

    . Yamano, T. et al. Crystal structure of Cpf1 in complex with leader RNA and target DNA. Cell 165 949-962 (2016).

  • 10th

    Yang, H., Gao, P., Rajashankar, KR & Patel, DJ PAM-dependent target DNA recognition and cleavage by C2c1-CRISPR-Cas endonuclease. Cell 167 1814-1828.e1812 (2016).

  • . 11

    Zetsche, B. et al. Cpf1 is a single RNA-driven endonuclease of a class 2 CRISPR-Cas system. Cell 163 759-771 (2015),

  • 12.

    Chen, J.S. et al. Binding of CRISPR-Cas12a targets unleashes indiscriminate single-stranded DNase activity. Science 360 436-439 (2018).

  • . 13

    Swarts, D. & Jinek, M. Mechanistic insights into the cis and trans -activating deoxyribonuclease activities of Cas12a. Preprint at https://www.biorxiv.org/content/early/2018/06/22/353748 (2018).

  • fourteenth

    Oakes, BL, Nadler, DC & Savage, DF Protein engineering by Cas9 for improved function. Methods Enzymol . 546 491-511 (2014).

  • 15th

    Oakes, B.L. et al. Engineering hotspot profiling identifies an allosteric CRISPR Cas9 switch. Nat. Biotechnol . 34 646-651 (2016).

  • sixteenth

    O & Connell, M.R. et al. Programmable RNA recognition and cleavage by CRISPR / Cas9. Nature 516 263-266 (2014).

  • 17th

    Zhu, X. et al. An efficient genotyping method for genome-modified animals and human cells generated with the CRISPR / Cas9 system. Sci. Rep . 4 6420 (2014).

  • 18th

    Mali, P. et al. RNA-driven human genome engineering via Cas9. Science 339 823-826 (2013).

  • 19th

    Yamano, T. et al. Structural basis for canonical and non-canonical PAM detection by CRISPR-Cpf1. Mol. Cell 67 633-645.e633 (2017).

  • 20th

    Holm, L. & Laakso, L.M. Dali Server Update. Nucleic Acids Res . 44 W351 – W355 (2016).

  • 21st

    Moolenaar, GF, Höglund, L. & Goosen, N. Indications of UvrB Damage Detection: Residues in the β-hairpin structure prevent binding to undamaged DNA. EMBO J . 20 6140-6149 (2001).

  • 22nd

    Shen, J., Gai, D., Patrick, A., Greenleaf, WB & Chen, XS The roles of residues on the channel & bgr; Hairpin and loop structures of simian virus 40 hexameric helicase. Proc. Natl Acad. Sci. USA 102 11248-11253 (2005).

  • 23rd

    Castella, S., Bingham, G. & Sanders, CM Common determinants of DNA melting and helicase-catalyzed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res . 34 3008-3019 (2006).

  • 24th

    Hahn, S. & Roberts, S. The zinc band domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. Genes Dev . 14 719-730 (2000).

  • 25th

    Okuda, M. et al. A novel zinc finger structure in the large subunit of the human transcription factor TFIIE. J. Biol. Chem. . 279 51395-51403 (2004).

  • 26th

    Pan, H. & Wigley, D. B. Structure of the zinc binding domain of Bacillus stearothermophilus DNA primase. Structure 8 231-239 (2000).

  • 27th

    Qi, L.S. et al. Use of CRISPR as RNA-driven platform for sequence-specific control of gene expression. Cell 152 1173-1183 (2013).

  • 28th

    Tiscornia, G., Singer, O. & Verma, I.M. Preparation and purification of lentiviral vectors. Nat. Protoc . 1 241-245 (2006).

  • 29th

    Mastronard, D.N. SerialEM: a program for automated acquisition of tilt series on Tecnai microscopes using sample position prediction. Microsc. Microanal . 9 1182-1183 (2003).

  • 30th

    Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14 331-332 (2017).

  • 31st

    Zhang, K. Gctf: Real-time CTF Determination and Correction. J. Structure Biol . 193 1-12 (2016).

  • 32nd

    Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Structure Biol . 157 38-46 (2007).

  • 33rd

    Kimanius, D., Forsberg, BO, Scheres, SH & Lindahl, E. Accelerated cryo-EM structure determination using GPUs in RELION-2. eLife 5 e18722 (2016).

  • 34th

    Punjani, A., Rubinstein, JL Structure determination. Nat. Methods 14 290-296 (2017).

  • 35th

    Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9 904-906 (2012).

  • 36th

    JM Asara, Christofk, HR, Freimark, LM & Cantley, LC A non-marking quantification method by MS / MS TIC versus SILAC and spectral counting in a proteomics screen. Proteomics 8 994-999 (2008).

  • 37th

    Adams, P.D. et al. PHENIX: A Comprehensive Python-based System for Macromolecular Structure Solutions. Acta Crystallogr. D 66 213-221 (2010).

  • 38th

    Emsley, P., Lohkamp, ​​B., Scott, W.G. & Cowtan, K. Features and Development of Coot. Acta Crystallogr. D 66 486-501 (2010).

  • . 39

    Chen, V.B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66 12-21 (2010).

  • 40th

    Trabuco, LG, Villa, E., Schreiner, E., Harrison, CB & Schulten, K. Molecular Dynamics Flexible Fitting: A Practical Guide to the Combination of Cryo-Electron Microscopy and X-Ray Crystallography. Methods 49 174-180 (2009),

  • 41.

    Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem . 25 1605-1612 (2004).

  • 42nd

    Shmakov, S. et al. Discovery and functional characterization of various class 2 CRISPR-Cas systems. Mol. Cell 60 385-397 (2015).

  • 43rd

    Katoh, K. & Standley, D.M. Mol. Biol. Evol . 30 772-780 (2013).

  • 44th

    Stamatakis, A. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312-1313 (2014).

  • 45th

    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v3: an online tool for displaying and annotating phylogenetic and other trees. Nucleic Acids Res . 44 W242 – W245 (2016).

  • 46th

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W., CD-HIT: Accelerated for the Clustering of Next Generation Sequencing Data. Bioinformatics 28 3150-3152 (2012).


  • Source link