قالب وردپرس درنا توس
Home / Science / Interplay of twisting magnetic field, negative energy particles – ScienceDaily

Interplay of twisting magnetic field, negative energy particles – ScienceDaily



Black holes are known for their voracious appetite, which acts with such force on matter that not even the light escapes as soon as it is swallowed.

Less understood, however, is how black holes consume energy that is blocked in their rotation, fast-light velocity plasmas into opposite sides in one of the most powerful displays in the universe. These jets can span millions of light years.

New simulations, led by researchers at the US Department of Energy's (Berkeley Lab) Lawrence Berkeley National Laboratory and UC Berkeley, have combined decades of theories to provide new insights into the driving mechanisms in the plasma jets they deprive the heavy gravitational fields of the black holes of energy and drive them away from their gaping mouths.

The simulations could provide a useful comparison for high-resolution observations of the Event Horizon Telescope, an array that allows this. The first direct images of the regions where the plasma jets are formed are designed that way.

The telescope provides new views of the black hole at the center of our own Milky Way, as well as detailed views of other supermassive black holes

"How can the energy be extracted in the rotation of a black hole to create rays?" said Kyle Parfrey, who led the work on the simulations when he was an Einstein Postdoctoral Fellow affiliated with the Berkeley Lab's Nuclear Science Division. "This has been a question for a long time."

Parfrey, a senior associate at NASA's Goddard Space Flight Center in Maryland, is the lead author of a study published in Physical Review Letters on January 23] detailing simulation research.

The simulations unite for the first time a theory that explains how electric currents around a black hole form magnetic fields into jets, with a separate theory explaining how particles cross through a black hole. The point of no return ̵

1; the event horizon – can be one remote observers appear to carry negative energy and reduce the rotational energy of the black hole.

It's like eating a snack that causes you to lose calories instead of gaining them. The black hole actually loses mass when these "negative energy" particles are rubbed.

Computer simulations have difficulty in modeling the complex physics involved in the start of the plasma jet, causing the formation of pairs of atoms causing electrons and positrons, the acceleration mechanism for particles and the emission of light in the jets.

The Berkeley Lab has contributed much to plasma simulations in its long history. Plasma is a gas-like mixture of charged particles that represents the most common state of the universe.

Parfrey said he realized that more complex simulations for describing jets require a combination of expertise in plasma physics and the general theory of relativity.

"I thought it would be a good time to bring these two things together," he said.

At a supercomputing center at the NASA's Ames Research Center in Mountain View, California, the simulations are resumed. Numerical techniques that provide the first model of a collisionless plasma in which collisions between charged particles do not play a major role in the present a strong gravitational field connected to a black hole.

The simulations, of course, lead to known effects B. The Blandford-Znajek mechanism, which describes the rotating magnetic fields that form jets, and a separate Penrose process that describes what happens when particles with negative energy a "Although it does not necessarily do so much to extract the rotational energy of the black hole," Parfrey says, "it may be directly related to the electric currents that spin the hole. Jets' magnetic fields. "

Although more detailed than some previous models, Parfrey noted that his team's simulations are still catching up with observations and are somewhat idealized to simplify the calculations needed to perform the simulations. [19659003] The team intends to better model the process by which electron-positron pairs are generated in the jets to more realistically investigate the plasma distribution of the jets and their radiation emission for comparison with observations. They also plan to extend the scope of the simulations to the event horizon of the black hole, the so-called accretion flux.

"We hope to provide a more consistent picture of the entire problem," he said


Source link