قالب وردپرس درنا توس
Home / Health / Not so easy: the complexity of a concussion more lifestyle

Not so easy: the complexity of a concussion more lifestyle



A team of researchers has investigated the type of concussion, which is far from easy.

The Stanford University team reported that concussion is not as simple as head shaking and concussion – it's far more

The combination of data recorded by soccer players with computer brain simulations revealed concussions and others mild traumatic brain injury occurs when an area deep in the brain trembles faster

But they also found that the mechanical complexity of the brain means there is no direct relationship between various bumps, spins and blows to the head and the likelihood of injury ,

"Concussion is a silent epidemic that affects millions of people," said researcher Mehmet Kurt.

Kurt and Kaveh Laksari are co-authors of the article. But just how shocks are created remains a mystery:

"We've tried to understand the biomechanics of the brain during an impact." With this understanding in mind, Kurt said, engineers could better diagnose, treat, and hopefully prevent a concussion

In previous studies, Camarillo's lab had equipped 31

college football players with special surgical masks that recorded how players' heads moved after an impact including some cases where players had suffered concussions.

Laksari and Kurt's idea was to use this data, along with similar data from NFL players, as inputs to a computer model of the brain. In this way they could try to find out what happened in the brain, which has led to a concussion. In particular, they could go beyond relatively simple models that focused on only one or two parameters, such as the maximum acceleration of the head during an impact.

The key difference between bumping impact and what did not happen was discovered by the researchers, who had to do with it – and especially where – their brain shakes. After an average hit, the researchers' computer model suggests that the brain is rocked about 30 times a second in a fairly uniform manner; that is, most parts of the brain move in unison.

In cases of injury, the movement of the brain is more complex. Instead of the brain moving largely in unison, an area deep in the brain called the corpus callosum – connecting the left and right hemispheres – shakes faster than the surrounding areas, significantly stressing these tissues.

Concussion Simulations pointing to the corpus callosum are consistent with empirical observations – patients with concussions often have damage in the corpus callosum. However, Laksari and Kurt emphasize that their results are predictions that need to be extensively tested in the lab, either with animal brains or human brains donated for scientific studies.

"Watching this in experiments is going to be very challenging, but that would be an important next step," said Laksari.

Perhaps as important as physical experiments are additional simulations to clarify the relationship between head impacts and brain motion – specifically, what types of effects arise to the complex motion responsible for concussions and other mild craniocerebral injury seems to be. Based on the studies they have done so far, Laksari said they only know that the relationship is very complex.

Nevertheless, the profit for uncovering this relationship could be enormous. As scientists better understand how the brain moves after an impact and which movement causes the most damage, Kurt said, "We can develop better helmets, develop technologies that make on-the-spot diagnoses, for example in football, and possibly side effects. "which could all improve the results for those who get a nasty blow on the head.

The results are published in the journal Physical Review Letters.

Follow @htlifeandstyle for more


Source link

Leave a Reply

Your email address will not be published. Required fields are marked *