قالب وردپرس درنا توس
Home / Science / Observation of the two-neutrino double-electron trap in 124 Xe with XENON1T

Observation of the two-neutrino double-electron trap in 124 Xe with XENON1T



  • . 1

    Winter, R.G. Double K Capture and Single K Capture with Positron Emission. Phys. Rev . 100 142-144 (1955).

  • . 2

    Gavrilyuk, Y.M. et al. References to 2 ν 2K capture in 78 Kr. Phys. Rev. C 87 035501

    (2013).

  • . 3

    Ratkevich, S.S. et al. Comparative study on the production of double-K-shell vacancies in the decay of single- and double-electron capture. Phys. Rev. C 96 065502 (2017).

  • . 4

    AP Meshik, AP, Hohenberg, CM, Pravdivtseva, OV & Kapusta, YS Weak Decay of 130 and 132 Ba: Geochemical Measurements. Phys. Rev. C 64 035205 (2001).

  • . 5

    Pujol, M., Marty, B., Burnard, P. & Philippot, P. Xenon in the Archean Baryte: Weak Decay of 130 Ba, mass-dependent isotope fractionation and implication for baryte formation. Geochim. Cosmochim Acta 73 6834-6846 (2009).

  • . 6

    Gavriljuk, Y.M. et al. 2K capture in 124 Xe: Data processing results at an exposure of 37.7 kg per day. Phys. Part. Nucl . 49 563-568 (2018).

  • . 7

    Abe, K. et al. Improved search for two-neutrino double-electron capture on 124 Xe and 126 Xe using particle identification in XMASS-I. Progr. Theor Exp. Phys . 2018 053D03 (2018).

  • . 8

    Suhonen, J. Double-Beta Decays of 124 Xe examined the QRPA framework. J. Phys. G Nucl. Phys . 40 075102 (2013).

  • . 9

    Aunola, M. & Suhonen, J. Systematic investigation of beta and double beta decay into excited final states. Nucl. Phys. A 602 133-166 (1996).

  • 10th

    Singh, S., Chandra, R., Rath, PK, Raina, PK & Hirsch, JG Nuclear Deformation and the two neutrino-double-β decay in 124,126 Xe, 128,130 Te, 130,132 Ba and 150 Nd isotopes. Eur. Phys. J.A. 33 375-388 (2007).

  • . 11

    Hirsch, M., Muto, K., Oda, T. & Klapdor's Kleingrothaus, HV Nuclear Structure Calculation of β + β + β + / EC and EC / EC decay matrix elements. Z. Phys. A 347 151-160 (1994).

  • 12th

    Rumyantsev, OA & Urine, MH The strength of the analog and Gamow-Teller giant resonances and hindrances of the 2 ββ decay rate. Phys. Lette. B 443 51-57 (1998).

  • . 13

    Pirinen, P. & amp; Suhonen, J. Systematic Approach to β and 2 ß ββ decays of mass A = 100-136 cores. Phys. Rev. C 91 054309 (2015).

  • fourteenth

    Coello Pérez, EA, Menéndez, J. & Schwenk, A. Two-neutrino double-electron capture on 124Xe, based on an effect theory and the core shell model. Preprint at https://arxiv.org/abs/1809.04443 (2018).

  • 15th

    Majorana, E. Theory of the symmetry of electrons and positrons. Nuovo Cimento 14 171-184 (1937).

  • sixteenth

    Bernabeu, J., De Rujula, A. & Jarlskog, C. Neutrinoless dual electron scavengers as a tool to measure ν
    e mass. Nucl. Phys. B 223 15-28 (1983).

  • 17th

    Sujkowski, Z. & Wycech, S. Neutrinoless Dual-Electron Catcher: a Tool to Search for Majorana Neutrinos. Phys. Rev. C 70 052501 (2004)

  • 18.

    Aprile, E. et al. Physics range of the XENON1T dark matter experiment. J. Cosmol. Astro part. Phys . 1604 027 (2016).

  • 19th

    Mount, B.J. et al. LUX-ZEPLIN (LZ). Report No. LBNL-1007256 (Lawrence Berkeley National Laboratory, 2017)

  • 20.

    Aalbers, J. et al. DARWIN: the ultimate dark matter detector. J. Cosmol. Astro part. Phys . 1611 017 (2016).

  • 21st

    Doi, M. & Kotani, T. Neutrinoless species of double beta decay. Prog. Theor Phys . 89 139-159 (1993).

  • 22nd

    Cullen, D. Program RELAX: A code for the computation of atomic relaxation spectra of X-rays and electrons. Report No. UCRL-ID – 110438 (Lawrence Livermore National Laboratory, 1992).

  • 23rd

    Buchmüller, W., Peccei, R. & Yanagida, T. Leptogenesis as the Origin of Matter. Annu. Rev. Nucl. Part. Sci . 55 311-355 (2005).

  • 24th

    D. Nesterenko et al. Double-beta transformations in isobaric triplets with mass numbers A = 124, 130 and 136. Phys. Rev. C 86 044313 (2012)

  • 25.

    Aprile, E. et al. Look for two-neutrino double electron capture of 124 Xe with XENON100. Phys. Rev. C 95 024605 (2017)

  • 26.

    Aprile, E. et al. The XENON1T experiment for dark matter. Eur. Phys. J.C. 77 881 (2017)

  • 27.

    Aprile, E. et al. Dark matter search results from one tonne exposure of XENON1T. Phys. Rev. Lett . 121 111302 (2018).

  • 28th

    Aprile, E. et al. Conception and simulation of a water-Cherenkov-muon-veto for the XENON1T experiment. J. Instrum . 9 P11006 (2014).

  • 29th

    Aprile, E. et al. Material radio test and selection for the XENON1T experiment for dark matter. Eur. Phys. J.C. 77 890 (2017).

  • 30th

    Aprile, E. et al. Removal of krypton from xenon by cryogenic distillation at ppq level. Eur. Phys. J.C. 77 275 (2017)

  • 31.

    de Laeter, J. et al. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem . 75 683-800 (2003).

  • 32nd

    Linstrom, P. & Mallard, WGE NIST Chemistry WebBook, NIST Reference Number 69 https: / / doi.org/10.18434/T4D303 (2018).

  • 33rd

    Zhang, H. et al. Direct search sensitivity of the dark matter of the PandaX-4T experiment. Sci. China Phys. Mech. Astron . 62 31011 (2019),

  • 34.

    Manalaysay, A. et al. Spatially uniform calibration of a liquid xenon detector at low energies using 83m Kr. Rev. Sci. Instrum . 81 073303 (2010).

  • 35th

    Conti, E. et al. Correlated fluctuations between luminescence and ionization in liquid xenon. Phys. Rev. B 68 054201 (2003).

  • 36th

    Aprile, E., E. Giboni, KL, Majewski, P., Ni, K. & Yamashita, M. Observation of anti-correlation between scintillation and ionization for MeV gamma rays in liquid xenon. Phys. Rev. B 76 014115 (2007)

  • 37.

    Szydagis, M. et al. NEST: a comprehensive model for the scintillation yield in liquid xenon. J. Instrum . 6 P10002 (2011),

  • 38.

    Akerib, D.S. et al. Signal yield, energy resolution and recombination fluctuations in liquid xenon. Phys. Rev. D 95 012008 (2017)

  • 39.

    Aprile, E. et al. The XENON100 experiment for dark matter. Astropart. Phys . 35 573-590 (2012).


  • Source link