قالب وردپرس درنا توس
Home / Science / Scientists use a photonic quantum simulator to vibrate virtual films of molecules – ScienceDaily

Scientists use a photonic quantum simulator to vibrate virtual films of molecules – ScienceDaily



Scientists have shown how an optical chip can simulate the motion of atoms in molecules at the quantum level, which could lead to better ways to create chemicals for use as pharmaceuticals.

An optical chip instead uses light for information processing of electricity, and can function as a quantum computing circuit when using individual particles of light known as photons. Data from the chip allows frame-by-frame reconstruction of atomic motions to create a virtual film of the quantum vibrations of a molecule. This is the centerpiece of the study published today in Nature .

These results are the result of collaboration between researchers from the University of Bristol, MIT, IUPUI, Nokia Bell Labs and NTT. The research could not only pave the way for more efficient pharmaceutical developments, but also new methods of molecular modeling for industrial chemists.

When lasers were invented in the 1

960s, experimental chemists had the idea of ​​using them to break down molecules. However, the oscillations within molecules rapidly redistribute the laser energy before the intended molecular bond is broken. Controlling the behavior of molecules requires an understanding of how they vibrate at the quantum level. However, modeling this dynamic requires tremendous computing power that goes far beyond what we can expect from future generations of supercomputers.

The Quantum Engineering and Technology Labs in Bristol have developed the use of optical chips to control single photons as basic circuits for quantum computers. Quantum computers are expected to be exponentially faster in solving certain problems than traditional supercomputers. However, the design of a quantum computer is a highly challenging long-term goal.

As reported in Nature the team demonstrated a new route to molecular modeling that could become an early application of photonic quantum technologies. The new methods exploit a similarity between the vibrations of atoms in molecules and photons of light in optical chips.

The Bristol physicist Anthony Laing, who led the project, said, "We can think of the atoms in molecules as connected. Throughout the molecule, the connected atoms collectively vibrate like a complicated dance routine: on a quantum level, the energy of the dance goes up or down in precisely defined levels as if the beat of the music had gone up (19659003) "Light also occurs in quantized packets called photons. Mathematically, a quantum of light is like a quantum of molecular vibration. With integrated chips we can control the behavior of photons very precisely. We can program a photonic chip that mimics the vibrations of a molecule.

"We program the chip by mapping its components to the structure of a particular molecule, such as ammonia, and then simulating how a particular vibration pattern evolves over a period of time." By taking many time intervals, we essentially build one Film of Molecular Dynamics. "

The first author Chris Sparrow, who was involved in the project, talked about the versatility of the simulator: "The chip can be reprogrammed in a matter of seconds to simulate different molecules. In these experiments, we simulated the dynamics of ammonia and one type of formaldehyde and other exotic ones Molecules.We simulated a water molecule that achieves thermal equilibrium with its environment and energy transport in a protein fragment.

"Since time is a controllable parameter in this type of simulation, we can immediately jump to the most interesting points in the film. Or play the simulation in slow motion. We can even rewind the simulation to understand the origins of a particular vibration pattern.

Joint lead author Dr. Enrique Martín-Lopez, now Senior Researcher at Nokia Bell Labs, added, "We also demonstrated how The Machine Learning Algorithm can identify the type of vibration that best breaks up an ammonia molecule. A key feature of the photonic simulator that enables this is the tracking of the energy that moves through the molecule, from one localized vibration to another. The development of these quantum simulation techniques continues to have a clear industrial relevance. "

The photonic chip used in the experiments was manufactured by the Japanese telecom company NTT.

Dr. Laing explained the main directions for the future of research:" Scaling up the simulators to a size where they face Conventional computational methods may be likely to require error correction or error mitigation techniques. And we want to further develop the complexity of the molecular model we use as a program for the simulator. Part of this study was to demonstrate techniques that go beyond the standard harmonics of molecular dynamics. We need to push these methods to increase the accuracy of our models in the real world.

"This approach to quantum simulation uses analogies between photonics and molecular vibrations as a starting point, giving us a head start to implement interesting applications. On this basis, we hope to be able to realize quantum simulation and modeling tools in the years to come offer a practical advantage. "


Source link